Oxidative inactivation of cytochrome P-450 1A (CYP1A) stimulated by 3,3',4,4'-tetrachlorobiphenyl: production of reactive oxygen by vertebrate CYP1As.

نویسندگان

  • J J Schlezinger
  • R D White
  • J J Stegeman
چکیده

Microsomal cytochrome P-450 1A (CYP1A) in a vertebrate model (the teleost fish scup) is inactivated by the aryl hydrocarbon receptor agonist 3,3',4,4'-tetrachlorobiphenyl (TCB). Here, the mechanism of CYP1A inactivation and its relationship to reactive oxygen species (ROS) formation were examined by using liver microsomes from scup and rat and expressed human CYP1As. In vitro inactivation of scup CYP1A activity 7-ethoxyresorufin O-deethylation by TCB was time dependent, NADPH dependent, oxygen dependent, and irreversible. TCB increased microsomal NADPH oxidation rates, and CYP1A inactivation was lessened by adding cytochrome c. CYP1A inactivation was accompanied by loss of spectral P-450, a variable loss of heme and a variable appearance of P-420. Rates of scup liver microsomal metabolism of TCB were < 0.5 pmol/min/mg, 25-fold less than the rate of P-450 loss. Non-heme iron chelators, antioxidant enzymes, and ROS scavengers had no influence on inactivation. Inactivation was accelerated by H(2)O(2) and azide but not by hydroxylamine or aminotriazole. TCB also inactivated rat liver microsomal CYP1A, apparently CYP1A1. Adding TCB to scup or rat liver microsomes containing induced levels of CYP1A, but not control microsomes, stimulated formation of ROS; formation rates correlated with native CYP1A1 content. TCB stimulated ROS formation by baculovirus-expressed human CYP1A1 but not CYP1A2. The results indicate that TCB uncouples the catalytic cycle of CYP1A, ostensibly CYP1A1, resulting in formation of ROS within the active site. These ROS may inactivate CYP1A or escape from the enzyme. ROS formed by CYP1A1 may contribute to the toxicity of planar halogenated aromatic hydrocarbons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxidative Inactivation of Cytochrome P-450 1A (CYP1A) Stimulated by 3,39,4,49-Tetrachlorobiphenyl: Production of Reactive Oxygen by Vertebrate CYP1As

Microsomal cytochrome P-450 1A (CYP1A) in a vertebrate model (the teleost fish scup) is inactivated by the aryl hydrocarbon receptor agonist 3,39,4,49-tetrachlorobiphenyl (TCB). Here, the mechanism of CYP1A inactivation and its relationship to reactive oxygen species (ROS) formation were examined by using liver microsomes from scup and rat and expressed human CYP1As. In vitro inactivation of sc...

متن کامل

Ensemble modeling of substrate binding to cytochromes P450: analysis of catalytic differences between CYP1A orthologs.

A novel application of modeling and docking approaches involving ensembles of homology models is used to understand structural bases underlying subtle catalytic differences between related cytochromes P450 (CYPs). Mammalian CYP1A1s and fish CYP1As are orthologous enzymes with similar substrate preferences. With some substrates (3,3',4,4'-tetrachlorobiphenyl, TCB) oxidation rates differ by order...

متن کامل

Reactive oxygen species from the uncoupling of human cytochrome P450 1B1 may contribute to the carcinogenicity of dioxin-like polychlorinated biphenyls.

Polychlorinated biphenyls (PCBs) are classified by the International Agency for Research on Cancer as probable human carcinogens. A subset of PCBs are described as 'dioxin like' because of similarities to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Dioxin-like PCBs have been shown to tightly bind the active site of cytochrome P450 (CYP) 1A isoforms, primarily CYP1A1, resulting in inhibition of CYP act...

متن کامل

Metabolism of the aryl hydrocarbon receptor agonist 3,3',4,4'-tetrachlorobiphenyl by the marine fish scup (Stenotomus chrysops) in vivo and in vitro.

The metabolism of the polychlorinated biphenyl congener 3,3',4,4'-tetrachlorobiphenyl (TCB) was examined in vitro and in vivo in the marine fish scup (Stenotomus chrysops). Untreated scup liver microsomes catalyzed metabolism of TCB with an estimated KM of 0.7 microM, at a rate < or = 0.13 pmol/min/mg. Metabolism was NADPH-dependent and inhibited by cytochrome c and CO, indicating cytochrome P4...

متن کامل

Identification and phylogenetic analysis of novel cytochrome P450 1A genes from ungulate species.

As part of an ongoing effort to understand the biological response of wild and domestic ungulates to different environmental pollutants such as dioxin-like compounds, cDNAs encoding for CYP1A1 and CYP1A2 were cloned and characterized. Four novel CYP1A cDNA fragments from the livers of four wild ungulates (elephant, hippopotamus, tapir and deer) were identified. Three fragments from hippopotamus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 56 3  شماره 

صفحات  -

تاریخ انتشار 1999